Editorial
Correspondence
Semiconductor nanocrystals as rare-earth alternatives p126
Talha Erdem & Hilmi Volkan Demir
doi:10.1038/nphoton.2011.25
The real issues with rare earths p127
Michael N. Silver
doi:10.1038/nphoton.2011.26
Research Highlights
Our choice from the recent literature pp128 - 129
doi:10.1038/nphoton.2011.23
News and Views
Silicon nanophotonics: Nanolasers with a twist pp130 - 131
Martin T. Hill
doi:10.1038/nphoton.2011.21
Fourier-transform spectroscopy: Into the vacuum ultraviolet pp131 - 133
Anne Thorne
doi:10.1038/nphoton.2011.20
Liquid crystals: Tiny tunable 3D lasers p133
Rachel Won
doi:10.1038/nphoton.2011.27
Particle acceleration: Pushing protons with photons pp134 - 135
Peter Norreys
doi:10.1038/nphoton.2011.29
Imaging: Focusing light in scattering media pp135 - 136
Soren D. Konecky & Bruce J. Tromberg
doi:10.1038/nphoton.2011.19
Photovoltaics: Towards the intermediate band pp137 - 138
Antonio Luque & Antonio Martí
doi:10.1038/nphoton.2011.22
Biophotonics: Neural optoelectronic interface p138
Oliver Graydon
doi:10.1038/nphoton.2011.28
View from...NANOMETA 2011: In search of new materials pp139 - 140
Rachel Won
doi:10.1038/nphoton.2011.30
Review
Chalcogenide photonics pp141 - 148
Benjamin J. Eggleton, Barry Luther-Davies & Kathleen Richardson
doi:10.1038/nphoton.2011.309
Abstract | Full Text | PDF (3,107 KB)
Subject term: Novel materials and engineered structures
Letters
High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm pp149 - 153
Nelson de Oliveira, Mourad Roudjane, Denis Joyeux, Daniel Phalippou, Jean-Claude Rodier & Laurent Nahon
doi:10.1038/nphoton.2010.314
Fourier-transform spectroscopy offers high resolution, wavelength accuracy and broad tunability, but is so far limited to the mid-ultraviolet range, down to wavelengths of 140 nm. Now, based on a wavefront-division scanning interferometer, researchers present a Fourier-transform spectroscopy scheme that covers a broad wavelength range of 40–250 nm with 7% tunability and an extrinsic absolute wavelength accuracy of 10−7.
Abstract | Full Text | PDF (1,096 KB)
Subject term: Spectroscopy
See also: News and Views by Thorne
Time-reversed ultrasonically encoded optical focusing into scattering media pp154 - 157
Xiao Xu, Honglin Liu & Lihong V. Wang
doi:10.1038/nphoton.2010.306
Focusing into a scattering medium is much more valuable than focusing through it. Scientists now demonstrate the dynamic focusing of light into a scattering medium by combining the ultrasonic modulation of diffused coherent light with optical phase conjugation.
Abstract | Full Text | PDF (3,745 KB) | Supplementary information
Subject terms: Imaging and sensing | Biophotonics
See also: News and Views by Konecky & Tromberg
Making optical atomic clocks more stable with 10−16-level laser stabilization pp158 - 161
Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma & C. W. Oates
doi:10.1038/nphoton.2010.313
Scientists demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2 × 10−16. They use this system as a stable optical source in an ytterbium optical lattice clock to resolve an ultranarrow 1 Hz linewidth for the 518 THz clock transition. Consistent measurements with a clock instability of 5 × 10−16/√τ are reported.
Abstract | Full Text | PDF (436 KB)
Subject terms: Quantum optics | Lasers, LEDs and light sources | Nanophotonics
Few-femtosecond timing at fourth-generation X-ray light sourcespp162 - 165
F. Tavella, N. Stojanovic, G. Geloni & M. Gensch
doi:10.1038/nphoton.2010.311
Next-generation X-ray sources have allowed new opportunities for ultrafast imaging, but such schemes require femtosecond synchronization between the pump and probe laser pulses. Here, researchers present few-femtosecond timing between a free-electron laser and an external laser exploiting terahertz radiation.
Abstract | Full Text | PDF (1,046 KB) | Supplementary information
Subject terms: Ultrafast photonics | X-rays | Terahertz optics
A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency pp166 - 169
K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar & S. Götzinger
doi:10.1038/nphoton.2010.312
Researchers exploit a dielectric planar antenna to tailor the angular emission of single photons from an oriented molecule. Record collection efficiency of 96% and detection rates of 50 MHz are demonstrated using a microscope objective at room temperature.
Abstract | Full Text | PDF (645 KB) | Supplementary information
Subject terms: Quantum optics | Terahertz optics | Nanophotonics
Articles
Nanolasers grown on silicon pp170 - 175
Roger Chen, Thai-Truong D. Tran, Kar Wei Ng, Wai Son Ko, Linus C. Chuang, Forrest G. Sedgwick & Connie Chang-Hasnain
doi:10.1038/nphoton.2010.315
Based on a CMOS-compatible growth process, researchers successfully demonstrate the bottom-up integration of InGaAs nanopillar lasers onto silicon chips. The resulting nanolaser offers tiny footprints and scalability, making it particularly suited to high-density optoelectronics.
Abstract | Full Text | PDF (1,964 KB) | Supplementary information
Subject terms: Lasers, LEDs and light sources | Nanophotonics
See also: News and Views by Hill
Full-colour quantum dot displays fabricated by transfer printing pp176 - 182
Tae-Ho Kim, Kyung-Sang Cho, Eun Kyung Lee, Sang Jin Lee, Jungseok Chae, Jung Woo Kim, Do Hwan Kim, Jang-Yeon Kwon, Gehan Amaratunga, Sang Yoon Lee, Byoung Lyong Choi, Young Kuk, Jong Min Kim & Kinam Kim
doi:10.1038/nphoton.2011.12
Scientists describe a size-selective quantum dot patterning technique that involves kinetically controlling the nanotransfer process without a solvent. The resulting printed quantum dot films exhibit excellent morphology and a well-ordered quantum dot structure. This technique allows fabrication of a 4-inch (or larger) thin-film transistor display with high colour purity and extremely high resolution.
Abstract | Full Text | PDF (4,556 KB) | Supplementary information
Subject terms: Displays | Optoelectronic devices and components | Novel materials and engineered structures