A positive density analogue of the Lieb?Thirring inequality |
Rupert L. Frank, Mathieu Lewin, Elliott H. Lieb and Robert Seiringer |
Duke mathematical journal (0012-7094) |
2013 |
vol.162 no.3 pp.435-495 |
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.dmj/1360874850 |
Uniqueness in Calder?n’s problem with Lipschitz conductivities |
Boaz Haberman and Daniel Tataru |
Duke mathematical journal (0012-7094) |
2013 |
vol.162 no.3 pp.497-516 |
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.dmj/1360874850 |
Collapsing of abelian fibered Calabi?Yau manifolds |
Mark Gross, Valentino Tosatti and Yuguang Zhang |
Duke mathematical journal (0012-7094) |
2013 |
vol.162 no.3 pp.517-551 |
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.dmj/1360874850 |
On the smooth locus of aligned Hilbert schemes, the $k$-secant lemma and the general projection theorem |
Laurent Gruson and Christian Peskine |
Duke mathematical journal (0012-7094) |
2013 |
vol.162 no.3 pp.553-578 |
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.dmj/1360874850 |
Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller?Segel |
Eric A. Carlen and Alessio Figalli |
Duke mathematical journal (0012-7094) |
2013 |
vol.162 no.3 pp.579-625 |
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&page=toc&handle=euclid.dmj/1360874850 |